Generation X Study

Mechanical

Dave Peters George T. Roach

July 27, 2000

Mechanical Topics

- Overview
- Driving Requirements and Assumptions
- Options considered
- Selected Configuration and Rationale
- Spacecraft Configurations
- Mass Summary
- ◆ Trades / Risks / Issues & Concerns

Mechanical Overview

- ♦ Several options/configurations have been studied.
- ♦ Each have their merits depending on baseline assumptions.
- ♦ Each will be presented, their advantages and disadvantages will be discussed.

Mechanical Driving Requirements

♦ Challenge:

- Design next generation X-Ray telescope that
 - Has 25 M² collector (mirror) area.
 - Has a 100 M focal length
 - Provide S/C bus to house power, comm, ACS, C&DH.
- Launch scenario:
 - Direct insertion to L2 orbit
 - Insertion of components to LEO (space station), assembly at station, transfer to L2 orbit

Mechanical Selected Configuration and Rationale

- ◆ Because the study is just beginning all configurations were considered.
- ♦ Some were dismissed quickly for obvious reasons.
- **♦** The others have their merits that warrant further study.
 - These options/configurations will be presented with their advantages and disadvantages

*

Option #1

- Direct insertion to L2
- Petals fold down around Bus
- •Mast deploys to 100 M
- •Will dimensionally fit in Delta IV shroud

Rejected

• Thermal limitations -Petals present too much exposed area for adequate thermal control

Option #2

- Direct insertion to L2
- •Delta IV launch vehicle
- •6 Petals
- Spinner, S/C bus despun
- Solar array
 - Deployed from end of collectors
- •Mast deploys to 100 M

Rejected:

- Does not meet 25 M²
- Thermal limited

Option #3

- Components to LEO
- Assembly and Check-out at Space Station
- Collector segments form 6 M dia.
- Solar array around collector. Also serves as sun shade for collector
- Spinner with despun bus
- Mast deploys to 100 M
- Component size will be optimized for launch vehicle

Draw-backs:

- Means of transfer to L2
 - · Slow trip-
 - long dwell in radiation belt
 - soft ride
 - Quick trip-
 - chance of damage to collector
 - misalignment of collector

Option #4

- Direct insertion to L2
- Delta IV launch vehicle
 - mass critical!!
- 3 Modules
 - · 2 collectors 4M dia. each
 - 1 bus 4M dia.
- Modules will rotate and drop into place
- Solar array
 - deployed from side of bus
 - along surface of collectors
- Mast deploys to 100 M

Draw-backs:

- Mass Critical
- If shuttle is used no provisions have been made for apogee kick motor for L2 insertion

Stowed

Option #5

- Direct insertion to L2
- •Delta IV launch vehicle
- •4 Petals
- Solar array
 - •along surface of collectors
- •Mast deploys to 100 M
- Apogee kick motor incorporated

Draw-backs:

Thermally challenging

Mechanical Mass Summary

◆ Capabilities		♦ S/C Mass	
 Delta IV (heavy) LEO - C3 = -0.7 - 	20,500 kg 7526 kg	ExperimentBusSub-systems	5600 kg 500 kg 500 kg
Atlas V (552)LEOC3 = -0.7 -	20,520 kg 5719 kg	• Prop system (LEO to L2) (Star 63F)	5000 kg
STS (shuttle)LEO -	<u>12,000</u> 14,000 kg		

Mechanical Trades/Risks/Issues & Concerns

♦ Option #1

REJECTED (Thermal)

♦ Option #2

- plus symmetrical, thermal friendly, large solar array
- minus EVA involved, propulsion required

- plus large collector area, lower inertia, adjustable alignment
- minus complex deployment, mass

♦ Option #5

- plus simpler deployments, symmetrical
- minus thermally challenging, sun shielding